Complete Machine Learning & Data Science with Python | A-Z
Complete Machine Learning & Data Science with Python | A-Z, available at $79.99, has an average rating of 4.47, with 64 lectures, 14 quizzes, based on 323 reviews, and has 18608 subscribers.
You will learn about Machine learning isn’t just useful for predictive texting or smartphone voice recognition. Machine learning is constantly being applied to new industries. Learn Machine Learning with Hands-On Examples What is Machine Learning? Machine Learning Terminology Evaluation Metrics What are Classification vs Regression? Evaluating Performance-Classification Error Metrics Evaluating Performance-Regression Error Metrics Supervised Learning Cross Validation and Bias Variance Trade-Off Use matplotlib and seaborn for data visualizations Machine Learning with SciKit Learn Linear Regression Algorithm Logistic Regresion Algorithm K Nearest Neighbors Algorithm Decision Trees And Random Forest Algorithm Support Vector Machine Algorithm Unsupervised Learning K Means Clustering Algorithm Hierarchical Clustering Algorithm Principal Component Analysis (PCA) Recommender System Algorithm Python instructors on OAK Academy specialize in everything from software development to data analysis, and are known for their effective. Python is a general-purpose, object-oriented, high-level programming language. Python is a multi-paradigm language, which means that it supports many programming approaches. Along with procedural and functional programming styles Python is a widely used, general-purpose programming language, but it has some limitations. Because Python is an interpreted, dynamically typed language Python is a general programming language used widely across many industries and platforms. One common use of Python is scripting, which means automating tasks. Python is a popular language that is used across many industries and in many programming disciplines. DevOps engineers use Python to script website. Python has a simple syntax that makes it an excellent programming language for a beginner to learn. To learn Python on your own, you first must become familiar Machine learning describes systems that make predictions using a model trained on real-world data. Machine learning is being applied to virtually every field today. That includes medical diagnoses, facial recognition, weather forecasts, image processing. It's possible to use machine learning without coding, but building new systems generally requires code. Python is the most used language in machine learning. Engineers writing machine learning systems often use Jupyter Notebooks and Python together. Machine learning is generally divided between supervised machine learning and unsupervised machine learning. In supervised machine learning. Machine learning is one of the fastest-growing and popular computer science careers today. Constantly growing and evolving. Machine learning is a smaller subset of the broader spectrum of artificial intelligence. While artificial intelligence describes any "intelligent machine" A machine learning engineer will need to be an extremely competent programmer with in-depth knowledge of computer science, mathematics, data science. Python machine learning, complete machine learning, machine learning a-z This course is ideal for individuals who are Machine learning isn’t just useful for predictive texting or smartphone voice recognition. Machine learning is constantly being applied to new industries and new problems. It is for everyone or Anyone who wants to start learning "Machine Learning" or Anyone who needs a complete guide on how to start and continue their career with machine learning or Software developer who wants to learn "Machine Learning" or Students Interested in Beginning Data Science Applications in Python Environment or People Wanting to Specialize in Anaconda Python Environment for Data Science and Scientific Computing or Students Wanting to Learn the Application of Supervised Learning (Classification) on Real Data Using Python or Anyone eager to learn python for data science and machine learning bootcamp with no coding background or Anyone interested in data sciences or Anyone who plans a career in data scientist, or Software developer whom want to learn python, or Anyone interested in machine learning a-z or People who want to become data scientist or People who want to learn machine learning a-z or Poeple who want tp learn complete machine learning It is particularly useful for Machine learning isn’t just useful for predictive texting or smartphone voice recognition. Machine learning is constantly being applied to new industries and new problems. It is for everyone or Anyone who wants to start learning "Machine Learning" or Anyone who needs a complete guide on how to start and continue their career with machine learning or Software developer who wants to learn "Machine Learning" or Students Interested in Beginning Data Science Applications in Python Environment or People Wanting to Specialize in Anaconda Python Environment for Data Science and Scientific Computing or Students Wanting to Learn the Application of Supervised Learning (Classification) on Real Data Using Python or Anyone eager to learn python for data science and machine learning bootcamp with no coding background or Anyone interested in data sciences or Anyone who plans a career in data scientist, or Software developer whom want to learn python, or Anyone interested in machine learning a-z or People who want to become data scientist or People who want to learn machine learning a-z or Poeple who want tp learn complete machine learning.
Enroll now: Complete Machine Learning & Data Science with Python | A-Z
Summary
Title: Complete Machine Learning & Data Science with Python | A-Z
Price: $79.99
Average Rating: 4.47
Number of Lectures: 64
Number of Quizzes: 14
Number of Published Lectures: 64
Number of Published Quizzes: 14
Number of Curriculum Items: 78
Number of Published Curriculum Objects: 78
Original Price: $199.99
Quality Status: approved
Status: Live
What You Will Learn
- Machine learning isn’t just useful for predictive texting or smartphone voice recognition. Machine learning is constantly being applied to new industries.
- Learn Machine Learning with Hands-On Examples
- What is Machine Learning?
- Machine Learning Terminology
- Evaluation Metrics
- What are Classification vs Regression?
- Evaluating Performance-Classification Error Metrics
- Evaluating Performance-Regression Error Metrics
- Supervised Learning
- Cross Validation and Bias Variance Trade-Off
- Use matplotlib and seaborn for data visualizations
- Machine Learning with SciKit Learn
- Linear Regression Algorithm
- Logistic Regresion Algorithm
- K Nearest Neighbors Algorithm
- Decision Trees And Random Forest Algorithm
- Support Vector Machine Algorithm
- Unsupervised Learning
- K Means Clustering Algorithm
- Hierarchical Clustering Algorithm
- Principal Component Analysis (PCA)
- Recommender System Algorithm
- Python instructors on OAK Academy specialize in everything from software development to data analysis, and are known for their effective.
- Python is a general-purpose, object-oriented, high-level programming language.
- Python is a multi-paradigm language, which means that it supports many programming approaches. Along with procedural and functional programming styles
- Python is a widely used, general-purpose programming language, but it has some limitations. Because Python is an interpreted, dynamically typed language
- Python is a general programming language used widely across many industries and platforms. One common use of Python is scripting, which means automating tasks.
- Python is a popular language that is used across many industries and in many programming disciplines. DevOps engineers use Python to script website.
- Python has a simple syntax that makes it an excellent programming language for a beginner to learn. To learn Python on your own, you first must become familiar
- Machine learning describes systems that make predictions using a model trained on real-world data.
- Machine learning is being applied to virtually every field today. That includes medical diagnoses, facial recognition, weather forecasts, image processing.
- It's possible to use machine learning without coding, but building new systems generally requires code.
- Python is the most used language in machine learning. Engineers writing machine learning systems often use Jupyter Notebooks and Python together.
- Machine learning is generally divided between supervised machine learning and unsupervised machine learning. In supervised machine learning.
- Machine learning is one of the fastest-growing and popular computer science careers today. Constantly growing and evolving.
- Machine learning is a smaller subset of the broader spectrum of artificial intelligence. While artificial intelligence describes any "intelligent machine"
- A machine learning engineer will need to be an extremely competent programmer with in-depth knowledge of computer science, mathematics, data science.
- Python machine learning, complete machine learning, machine learning a-z
Who Should Attend
- Machine learning isn’t just useful for predictive texting or smartphone voice recognition. Machine learning is constantly being applied to new industries and new problems. It is for everyone
- Anyone who wants to start learning "Machine Learning"
- Anyone who needs a complete guide on how to start and continue their career with machine learning
- Software developer who wants to learn "Machine Learning"
- Students Interested in Beginning Data Science Applications in Python Environment
- People Wanting to Specialize in Anaconda Python Environment for Data Science and Scientific Computing
- Students Wanting to Learn the Application of Supervised Learning (Classification) on Real Data Using Python
- Anyone eager to learn python for data science and machine learning bootcamp with no coding background
- Anyone interested in data sciences
- Anyone who plans a career in data scientist,
- Software developer whom want to learn python,
- Anyone interested in machine learning a-z
- People who want to become data scientist
- People who want to learn machine learning a-z
- Poeple who want tp learn complete machine learning
Target Audiences
- Machine learning isn’t just useful for predictive texting or smartphone voice recognition. Machine learning is constantly being applied to new industries and new problems. It is for everyone
- Anyone who wants to start learning "Machine Learning"
- Anyone who needs a complete guide on how to start and continue their career with machine learning
- Software developer who wants to learn "Machine Learning"
- Students Interested in Beginning Data Science Applications in Python Environment
- People Wanting to Specialize in Anaconda Python Environment for Data Science and Scientific Computing
- Students Wanting to Learn the Application of Supervised Learning (Classification) on Real Data Using Python
- Anyone eager to learn python for data science and machine learning bootcamp with no coding background
- Anyone interested in data sciences
- Anyone who plans a career in data scientist,
- Software developer whom want to learn python,
- Anyone interested in machine learning a-z
- People who want to become data scientist
- People who want to learn machine learning a-z
- Poeple who want tp learn complete machine learning
Hello there,
Welcome to the “Complete Machine Learning & Data Science with Python | A-Z” course
Use Scikit, learn NumPy, Pandas, Matplotlib, Seaborn, and dive into machine learning A-Z with Python and Data Science
Machine learning isn’t just useful for predictive texting or smartphone voice recognition Machine learning is constantly being applied to new industries and new problems Whether you’re a marketer, video game designer, or programmer, my course on OAK Academy here to help you apply machine learning to your work Complete machine learning & data science with python | a-z, machine learning a-z, Complete machine learning & data science with python, complete machine learning and data science with python a-z, machine learning using python, complete machine learning and data science, machine learning, complete machine learning, data science
It’s hard to imagine our lives without machine learning Predictive texting, email filtering, and virtual personal assistants like Amazon’s Alexa and the iPhone’s Siri, are all technologies that function based on machine learning algorithms and mathematical models Python, machine learning, django, python programming, machine learning python, python for beginners, data science
Python instructors on OAK Academy specialize in everything from software development to data analysis, and are known for their effective, friendly instruction for students of all levels
Whether you work in machine learning or finance, or are pursuing a career in web development or data science, Python is one of the most important skills you can learn Python’s simple syntax is especially suited for desktop, web, and business applications Python’s design philosophy emphasizes readability and usability Python was developed upon the premise that there should be only one way (and preferably one obvious way) to do things, a philosophy that has resulted in a strict level of code standardization The core programming language is quite small and the standard library is also large In fact, Python’s large library is one of its greatest benefits, providing a variety of different tools for programmers suited for many different tasks
Do you know data science needs will create 11 5 million job openings by 2026?
Do you know the average salary is $100 000 fordata science careers!
Data Science Careers Are Shaping The Future
Data science experts are needed in almost every field, from government security to dating apps Millions of businesses and government departments rely on big data to succeed and better serve their customers So data science careers are in high demand
-
If you want to learn one of the employer’s most request skills?
-
If you are curious about Data Science and looking to start your self-learning journey into the world of data with Python?
-
If you are an experienced developer and looking for a landing in Data Science!
In all cases, you are at the right place!
We’ve designed for you “Complete Machine Learning & Data Science with Python | A-Z” a straightforward course for Python Programming Language and Machine Learning
In the course, you will have down-to-earth way explanations with projects With this course, you will learn machine learning step-by-step I made it simple and easy with exercises, challenges, and lots of real-life examples
We will open the door of the Data Science and Machine Learning a-z world and will move deeper You will learn the fundamentals of Machine Learning A-Z and its beautiful libraries such as Scikit Learn
Throughout the course, we will teach you how to use Python to analyze data, create beautiful visualizations,and use powerful machine learning python algorithms
This Machine Learning course is for everyone!
My “Machine Learning with Hands-On Examples in Data Science” is for everyone! If you don’t have any previous experience, not a problem! This course is expertly designed to teach everyone from complete beginners, right through to professionals ( as a refresher)
Why we use a Python programming language in Machine learning?
Python is a general-purpose, high-level, and multi-purpose programming language The best thing about Python is, it supports a lot of today’s technology including vast libraries for Twitter, data mining, scientific calculations, designing, back-end server for websites, engineering simulations, artificial learning, augmented reality and what not! Also, it supports all kinds of App development
What you will learn?
In this course, we will start from the very beginning and go all the way to the end of “Machine Learning” with examples
Before each lesson, there will be a theory part After learning the theory parts, we will reinforce the subject with practical examples
During the course you will learn the following topics:
-
What is Machine Learning?
-
More About Machine Learning
-
Machine Learning Terminology
-
Evaluation Metrics
-
What is Classification vs Regression?
-
Evaluating Performance-Classification Error Metrics
-
Evaluating Performance-Regression Error Metrics
-
Machine Learning with Python
-
Supervised Learning
-
Cross-Validation and Bias Variance Trade-Off
-
Use Matplotlib and seaborn for data visualizations
-
Machine Learning with SciKit Learn
-
Linear Regression Theory
-
Logistic Regression Theory
-
Logistic Regression with Python
-
K Nearest Neighbors Algorithm Theory
-
K Nearest Neighbors Algorithm With Python
-
K Nearest Neighbors Algorithm Project Overview
-
K Nearest Neighbors Algorithm Project Solutions
-
Decision Trees And Random Forest Algorithm Theory
-
Decision Trees And Random Forest Algorithm With Python
-
Decision Trees And Random Forest Algorithm Project Overview
-
Decision Trees And Random Forest Algorithm Project Solutions
-
Support Vector Machines Algorithm Theory
-
Support Vector Machines Algorithm With Python
-
Support Vector Machines Algorithm Project Overview
-
Support Vector Machines Algorithm Project Solutions
-
Unsupervised Learning Overview
-
K Means Clustering Algorithm Theory
-
K Means Clustering Algorithm With Python
-
K Means Clustering Algorithm Project Overview
-
K Means Clustering Algorithm Project Solutions
-
Hierarchical Clustering Algorithm Theory
-
Hierarchical Clustering Algorithm With Python
-
Principal Component Analysis (PCA) Theory
-
Principal Component Analysis (PCA) With Python
-
Recommender System Algorithm Theory
-
Recommender System Algorithm With Python
-
Complete machine learning
-
Python machine learning
-
Machine learning a-z
With my up-to-date course, you will have a chance to keep yourself up-to-date and equip yourself with a range of Python programming skills I am also happy to tell you that I will be constantly available to support your learning and answer questions
What is machine learning?
Machine learningdescribes systems that make predictions using a model trained on real-world data For example, let’s say we want to build a system that can identify if a cat is in a picture We first assemble many pictures to train our machine learning model During this training phase, we feed pictures into the model, along with information around whether they contain a cat While training, the model learns patterns in the images that are the most closely associated with cats This model can then use the patterns learned during training to predict whether the new images that it’s fed contain a cat In this particular example, we might use a neural network to learn these patterns, but machine learning can be much simpler than that Even fitting a line to a set of observed data points, and using that line to make new predictions, counts as a machine learning model
What is machine learning used for?
Machine learning a-zis being applied to virtually every field today That includes medical diagnoses, facial recognition, weather forecasts, image processing, and more In any situation in which pattern recognition, prediction, and analysis are critical, machine learning can be of use Machine learning is often a disruptive technology when applied to new industries and niches Machine learning engineers can find new ways to apply machine learning technology to optimize and automate existing processes With the right data, you can use machine learning technology to identify extremely complex patterns and yield highly accurate predictions
Does Machine learning require coding?
It’s possible to use machine learning data sciencewithout coding, but building new systems generally requires code For example, Amazon’s Rekognition service allows you to upload an image via a web browser, which then identifies objects in the image This uses a pre-trained model, with no coding required However, developing machine learning systems involves writing some Pythoncode to train, tune, and deploy your models It’s hard to avoid writing code to pre-process the data feeding into your model Most of the work done by a machine learning practitioner involves cleaning the data used to train the machine They also perform “feature engineering” to find what data to use and how to prepare it for use in a machine learning model Tools like AutoML and SageMaker automate the tuning of models Often only a few lines of code can train a model and make predictions from it
What is the best language for machine learning?
Python is the most used language in machine learning using python Engineers writing machine learning systems often use Jupyter Notebooks and Python together Jupyter Notebooks is a web application that allows experimentation by creating and sharing documents that contain live code, equations, and more Machine learning involves trial and error to see which hyperparameters and feature engineering choices work best It’s useful to have a development environment such as Python so that you don’t need to compile and package code before running it each time Python is not the only language choice for machine learning Tensorflow is a popular framework for developing neural networks and offers a C++ API There is a complete machine learning framework for C# called ML NET Scala or Java are sometimes used with Apache Spark to build machine learning systems that ingest massive data sets
What are the different types of machine learning?
Machine learning is generally divided between supervised machine learning and unsupervised machine learning In supervised machine learning, we train machine learning models on labeled data For example, an algorithm meant to detect spam might ingest thousands of email addresses labeled ‘spam’ or ‘not spam ‘ That trained model could then identify new spam emails even from data it’s never seen In unsupervised learning, a machine learning model looks for patterns in unstructured data One type of unsupervised learning is clustering In this example, a model could identify similar movies by studying their scripts or cast, then group the movies together into genres This unsupervised model was not trained to know which genre a movie belongs to Rather, it learned the genres by studying the attributes of the movies themselves There are many techniques available within
Is Machine learning a good career?
Machine learning python is one of the fastest-growing and popular computer science careers today Constantly growing and evolving, you can apply machine learning to a variety of industries, from shipping and fulfillment to medical sciences Machine learning engineers work to create artificial intelligence that can better identify patterns and solve problems The machine learning discipline frequently deals with cutting-edge, disruptive technologies However, because it has become a popular career choice, it can also be competitive Aspiring machine learning engineers can differentiate themselves from the competition through certifications, boot camps, code repository submissions, and hands-on experience
What is the difference between machine learning and artifical intelligence?
Machine learning is a smaller subset of the broader spectrum of artificial intelligence While artificial intelligence describes any “intelligent machine” that can derive information and make decisions, machine learning describes a method by which it can do so Through machine learning, applications can derive knowledge without the user explicitly giving out the information This is one of the first and early steps toward “true artificial intelligence” and is extremely useful for numerous practical applications In machine learning applications, an AI is fed sets of information It learns from these sets of information about what to expect and what to predict But it still has limitations A machine learning engineer must ensure that the AI is fed the right information and can use its logic to analyze that information correctly
What skills should a machine learning engineer know?
A python machine learningengineer will need to be an extremely competent programmer with in-depth knowledge of computer science, mathematics, data science, and artificial intelligence theory Machine learning engineers must be able to dig deep into complex applications and their programming As with other disciplines, there are entry-level machine learning engineers and machine learning engineers with high-level expertise Python and R are two of the most popular languages within the machine learning field
What is python?
Machine learning pythonis a general-purpose, object-oriented, high-level programming language Whether you work in artificial intelligence or finance or are pursuing a career in web development or data science, Python bootcampis one of the most important skills you can learn Python’s simple syntax is especially suited for desktop, web, and business applications Python’s design philosophy emphasizes readability and usability Python was developed on the premise that there should be only one way (and preferably, one obvious way) to do things, a philosophy that resulted in a strict level of code standardization The core programming language is quite small and the standard library is also large In fact, Python’s large library is one of its greatest benefits, providing different tools for programmers suited for a variety of tasks
Python vs R: What is the Difference?
Python and R are two of today’s most popular programming tools When deciding between Python and R in data science , you need to think about your specific needs On one hand, Python is relatively easy for beginners to learn, is applicable across many disciplines, has a strict syntax that will help you become a better coder, and is fast to process large datasets On the other hand, R has over 10,000 packages for data manipulation, is capable of easily making publication-quality graphics, boasts superior capability for statistical modeling, and is more widely used in academia, healthcare, and finance
What does it mean that Python is object-oriented?
Python is a multi-paradigm language, which means that it supports many data analysis programming approaches Along with procedural and functional programming styles, Python also supports the object-oriented style of programming In object-oriented programming, a developer completes a programming project by creating Python objects in code that represent objects in the actual world These objects can contain both the data and functionality of the real-world object To generate an object in Python you need a class You can think of a class as a template You create the template once, and then use the template to create as many objects as you need Python classes have attributes to represent data and methods that add functionality A class representing a car may have attributes like color, speed, and seats and methods like driving, steering, and stopping
What are the limitations of Python?
Python is a widely used, general-purpose programming language, but it has some limitations Because Python in machine learning is an interpreted, dynamically typed language, it is slow compared to a compiled, statically typed language like C Therefore, Python is useful when speed is not that important Python’s dynamic type system also makes it use more memory than some other programming languages, so it is not suited to memory-intensive applications The Python virtual engine that runs Python code runs single-threaded, making concurrency another limitation of the programming language Though Python is popular for some types of game development, its higher memory and CPU usage limits its usage for high-quality 3D game development That being said, computer hardware is getting better and better, and the speed and memory limitations of Python are getting less and less relevant
How is Python used?
Python is a general programming language used widely across many industries and platforms One common use of Python is scripting, which means automating tasks in the background Many of the scripts that ship with Linux operating systems are Python scripts Python is also a popular language for machine learning, data analytics, data visualization, and data science because its simple syntax makes it easy to quickly build real applications You can use Python to create desktop applications Many developers use it to write Linux desktop applications, and it is also an excellent choice for web and game development Python web frameworks like Flask and Django are a popular choice for developing web applications Recently, Python is also being used as a language for mobile development via the Kivy third-party library
What jobs use Python?
Python is a popular language that is used across many industries and in many programming disciplines DevOps engineers use Python to script website and server deployments Web developers use Python to build web applications, usually with one of Python’s popular web frameworks like Flask or Django Data scientists and data analysts use Python to build machine learning models, generate data visualizations, and analyze big data Financial advisors and quants (quantitative analysts) use Python to predict the market and manage money Data journalists use Python to sort through information and create stories Machine learning engineers use Python to develop neural networks and artificial intelligent systems
How do I learn Python on my own?
Python has a simple syntax that makes it an excellent programming language for a beginner to learn To learn Python on your own, you first must become familiar with the syntax But you only need to know a little bit about Python syntax to get started writing real code; you will pick up the rest as you go Depending on the purpose of using it, you can then find a good Python tutorial, book, or course that will teach you the programming language by building a complete application that fits your goals If you want to develop games, then learn Python game development If you’re going to build web applications, you can find many courses that can teach you that, too Udemy’s online courses are a great place to start if you want to learn Python on your own
What is data science?
We have more data than ever before But data alone cannot tell us much about the world around us We need to interpret the information and discover hidden patterns This is where data science comes in Data science uses algorithms to understand raw data The main difference between data science and traditional data analysis is its focus on prediction Data science seeks to find patterns in data and use those patterns to predict future data It draws on machine learning to process large amounts of data, discover patterns, and predict trends Data science includes preparing, analyzing, and processing data It draws from many scientific fields, and as a science, it progresses by creating new algorithms to analyze data and validate current methods
What does a data scientist do?
Data Scientists use machine learning to discover hidden patterns in large amounts of raw data to shed light on real problems This requires several steps First, they must identify a suitable problem Next, they determine what data are needed to solve such a situation and figure out how to get the data Once they obtain the data, they need to clean the data The data may not be formatted correctly, it might have additional unnecessary data, it might be missing entries, or some data might be incorrect Data Scientists must, therefore, make sure the data is clean before they analyze the data To analyze the data, they use machine learning techniques to build models Once they create a model, they test, refine, and finally put it into production
What are the most popular coding languages for data science?
Python is the most popular programming language for data science It is a universal language that has a lot of libraries available It is also a good beginner language R is also popular; however, it is more complex and designed for statistical analysis It might be a good choice if you want to specialize in statistical analysis You will want to know either Python or R and SQL SQL is a query language designed for relational databases Data scientists deal with large amounts of data, and they store a lot of that data in relational databases Those are the three most-used programming languages Other languages such as Java, C++, JavaScript, and Scala are also used, albeit less so If you already have a background in those languages, you can explore the tools available in those languages However, if you already know another programming language, you will likely be able to pick up Python very quickly
How long does it take to become a data scientist?
This answer, of course, varies The more time you devote to learning new skills, the faster you will learn It will also depend on your starting place If you already have a strong base in mathematics and statistics, you will have less to learn If you have no background in statistics or advanced mathematics, you can still become a data scientist; it will just take a bit longer Data science requires lifelong learning, so you will never really finish learning A better question might be, “How can I gauge whether I know enough to become a data scientist?” Challenge yourself to complete data science projects using open data The more you practice, the more you will learn, and the more confident you will become Once you have several projects that you can point to as good examples of your skillset as a data scientist, you are ready to enter the field
How can I learn data science on my own?
It is possible to learn data science on your own, as long as you stay focused and motivated Luckily, there are a lot of online courses and boot camps available Start by determining what interests you about data science If you gravitate to visualizations, begin learning about them Starting with something that excites you will motivate you to take that first step If you are not sure where you want to start, try starting with learning Python It is an excellent introduction to programming languages and will be useful as a data scientist Begin by working through tutorials or Udemy courses on the topic of your choice Once you have developed a base in the skills that interest you, it can help to talk with someone in the field Find out what skills employers are looking for and continue to learn those skills When learning on your own, setting practical learning goals can keep you motivated
Does data science require coding?
The jury is still out on this one Some people believe that it is possible to become a data scientist without knowing how to code, but others disagree A lot of algorithms have been developed and optimized in the field You could argue that it is more important to understand how to use the algorithms than how to code them yourself As the field grows, more platforms are available that automate much of the process However, as it stands now, employers are primarily looking for people who can code, and you need basic programming skills The data scientist role is continuing to evolve, so that might not be true in the future The best advice would be to find the path that fits your skillset
What skills should a data scientist know?
A data scientist requires many skills They need a strong understanding of statistical analysis and mathematics, which are essential pillars of data science A good understanding of these concepts will help you understand the basic premises of data science Familiarity with machine learning is also important Machine learning is a valuable tool to find patterns in large data sets To manage large data sets, data scientists must be familiar with databases Structured query language (SQL) is a must-have skill for data scientists However, nonrelational databases (NoSQL) are growing in popularity, so a greater understanding of database structures is beneficial The dominant programming language in Data Science is Python — although R is also popular A basis in at least one of these languages is a good starting point Finally, to communicate findings, data scientists require knowledge of visualizations Data visualizations allow them to share complex data in an accessible manner
Is data science a good career?
The demand for data scientists is growing We do not just have data scientists; we have data engineers, data administrators, and analytics managers The jobs also generally pay well This might make you wonder if it would be a promising career for you A better understanding of the type of work a data scientist does can help you understand if it might be the path for you First and foremost, you must think analytically Data science is about gaining a more in-depth understanding of info through data Do you fact-check information and enjoy diving into the statistics? Although the actual work may be quite technical, the findings still need to be communicated Can you explain complex findings to someone who does not have a technical background? Many data scientists work in cross-functional teams and must share their results with people with very different backgrounds If this sounds like a great work environment, then it might be a promising career for you
What does it mean that Python is object-oriented?
Python is a multi-paradigm language, which means that it supports many programming approaches Along with procedural and functional programming styles, Python also supports the object-oriented style of programming In object-oriented programming, a developer completes a programming project by creating Python objects in code that represent objects in the actual world These objects can contain both the data and functionality of the real-world object To generate an object in Python you need a class You can think of a class as a template You create the template once, and then use the template to create as many objects as you need Python classes have attributes to represent data and methods that add functionality A class representing a car may have attributes like color, speed, and seats and methods like driving, steering, and stopping The concept of combining data with functionality in an object is called encapsulation, a core concept in the object-oriented programming paradigm
Why would you want to take this course?
Our answer is simple: The quality of teaching
OAK Academy based in London is an online education company OAK Academy gives education in the field of IT, Software, Design, development in English, Portuguese, Spanish, Turkish, and a lot of different languages on the Udemy platform where it has over 1000 hours of video education lessons OAK Academy both increases its education series number by publishing new courses, and it makes students aware of all the innovations of already published courses by upgrading
When you enroll, you will feel the OAK Academy`s seasoned developers’ expertise Questions sent by students to our instructors are answered by our instructors within 48 hours at the latest
Video and Audio Production Quality
All our videos are created/produced as high-quality video and audio to provide you the best learning experience
You will be,
-
Seeing clearly
-
Hearing clearly
-
Moving through the course without distractions
You’ll also get:
-
Lifetime Access to The Course
-
Fast & Friendly Support in the Q&A section
-
Udemy Certificate of Completion Ready for Download
We offer full support, answering any questions
If you are ready to learnthe “Complete Machine Learning & Data Science with Python | A-Z” course
Dive in now! See you in the course!
Course Curriculum
Chapter 1: First Contact with Machine Learning
Lecture 1: What is Machine Learning?
Lecture 2: Machine Learning Terminology
Lecture 3: Machine Learning: Project Files
Lecture 4: FAQ regarding Python
Lecture 5: FAQ regarding Machine Learning
Chapter 2: Installations for Python
Lecture 1: Installing Anaconda Distribution for Windows
Lecture 2: Installing Anaconda Distribution for MacOs
Lecture 3: Installing Anaconda Distribution for Linux
Lecture 4: Overview of Jupyter Notebook and Google Colab
Chapter 3: Evaluation Metrics in Machine Learning
Lecture 1: Classification vs Regression in Machine Learning
Lecture 2: Machine Learning Model Performance Evaluation: Classification Error Metrics
Lecture 3: Evaluating Performance: Regression Error Metrics in Python
Lecture 4: Machine Learning With Python
Chapter 4: Supervised Learning with Machine Learning
Lecture 1: What is Supervised Learning in Machine Learning?
Chapter 5: Linear Regression Algorithm in Machine Learning A-Z
Lecture 1: Linear Regression Algorithm Theory in Machine Learning A-Z
Lecture 2: Linear Regression Algorithm With Python Part 1
Lecture 3: Linear Regression Algorithm With Python Part 2
Lecture 4: Linear Regression Algorithm with Python Part 3
Lecture 5: Linear Regression Algorithm with Python Part 4
Chapter 6: Bias Variance Trade-Off in Machine Learning
Lecture 1: What is Bias Variance Trade-Off?
Chapter 7: Logistic Regression Algorithm in Machine Learning A-Z
Lecture 1: What is Logistic Regression Algorithm in Machine Learning?
Lecture 2: Logistic Regression Algorithm with Python Part 1
Lecture 3: Logistic Regression Algorithm with Python Part 2
Lecture 4: Logistic Regression Algorithm with Python Part 3
Lecture 5: Logistic Regression Algorithm with Python Part 4
Lecture 6: Logistic Regression Algorithm with Python Part 5
Chapter 8: K-fold Cross-Validation in Machine Learning A-Z
Lecture 1: K-Fold Cross-Validation Theory
Lecture 2: K-Fold Cross-Validation with Python
Chapter 9: K Nearest Neighbors Algorithm in Machine Learning A-Z
Lecture 1: K Nearest Neighbors Algorithm Theory
Lecture 2: K Nearest Neighbors Algorithm with Python Part 1
Lecture 3: K Nearest Neighbors Algorithm with Python Part 2
Lecture 4: K Nearest Neighbors Algorithm with Python Part 3
Chapter 10: Hyperparameter Optimization
Lecture 1: Hyperparameter Optimization Theory
Lecture 2: Hyperparameter Optimization with Python
Chapter 11: Decision Tree Algorithm in Machine Learning A-Z
Lecture 1: Decision Tree Algorithm Theory
Lecture 2: Decision Tree Algorithm with Python Part 1
Lecture 3: Decision Tree Algorithm with Python Part 2
Lecture 4: Decision Tree Algorithm with Python Part 3
Lecture 5: Decision Tree Algorithm with Python Part 4
Lecture 6: Decision Tree Algorithm with Python Part 5
Chapter 12: Random Forest Algorithm in Machine Learning A-Z
Lecture 1: Random Forest Algorithm Theory
Lecture 2: Random Forest Algorithm with Pyhon Part 1
Lecture 3: Random Forest Algorithm with Pyhon Part 2
Chapter 13: Support Vector Machine Algorithm in Machine Learning A-Z
Lecture 1: Support Vector Machine Algorithm Theory
Lecture 2: Support Vector Machine Algorithm with Python Part 1
Lecture 3: Support Vector Machine Algorithm with Python Part 2
Lecture 4: Support Vector Machine Algorithm with Python Part 3
Lecture 5: Support Vector Machine Algorithm with Python Part 4
Chapter 14: Unsupervised Learning with Machine Learning
Lecture 1: Unsupervised Learning Overview
Chapter 15: K Means Clustering Algorithm in Machine Learning A-Z
Lecture 1: K Means Clustering Algorithm Theory
Lecture 2: K Means Clustering Algorithm with Python Part 1
Lecture 3: K Means Clustering Algorithm with Python Part 2
Lecture 4: K Means Clustering Algorithm with Python Part 3
Lecture 5: K Means Clustering Algorithm with Python Part 4
Chapter 16: Hierarchical Clustering Algorithm in machine learning data science
Lecture 1: Hierarchical Clustering Algorithm Theory
Lecture 2: Hierarchical Clustering Algorithm with Python Part 1
Lecture 3: Hierarchical Clustering Algorithm with Python Part 2
Chapter 17: Principal Component Analysis (PCA) in Machine Learning A-Z
Lecture 1: Principal Component Analysis (PCA) Theory
Lecture 2: Principal Component Analysis (PCA) with Python Part 1
Lecture 3: Principal Component Analysis (PCA) with Python Part 2
Lecture 4: Principal Component Analysis (PCA) with Python Part 3
Chapter 18: Recommender System Algorithm in Machine Learning A-Z
Lecture 1: What is the Recommender System? Part 1
Lecture 2: What is the Recommender System? Part 2
Chapter 19: Extra
Lecture 1: Complete Machine Learning & Data Science with Python | A-Z
Instructors
-
Oak Academy
Web & Mobile Development, IOS, Android, Ethical Hacking, IT -
OAK Academy Team
instructor
Rating Distribution
- 1 stars: 2 votes
- 2 stars: 1 votes
- 3 stars: 30 votes
- 4 stars: 100 votes
- 5 stars: 190 votes
Frequently Asked Questions
How long do I have access to the course materials?
You can view and review the lecture materials indefinitely, like an on-demand channel.
Can I take my courses with me wherever I go?
Definitely! If you have an internet connection, courses on Udemy are available on any device at any time. If you don’t have an internet connection, some instructors also let their students download course lectures. That’s up to the instructor though, so make sure you get on their good side!
You may also like
- Top 10 Video Editing Courses to Learn in November 2024
- Top 10 Music Production Courses to Learn in November 2024
- Top 10 Animation Courses to Learn in November 2024
- Top 10 Digital Illustration Courses to Learn in November 2024
- Top 10 Renewable Energy Courses to Learn in November 2024
- Top 10 Sustainable Living Courses to Learn in November 2024
- Top 10 Ethical AI Courses to Learn in November 2024
- Top 10 Cybersecurity Fundamentals Courses to Learn in November 2024
- Top 10 Smart Home Technology Courses to Learn in November 2024
- Top 10 Holistic Health Courses to Learn in November 2024
- Top 10 Nutrition And Diet Planning Courses to Learn in November 2024
- Top 10 Yoga Instruction Courses to Learn in November 2024
- Top 10 Stress Management Courses to Learn in November 2024
- Top 10 Mindfulness Meditation Courses to Learn in November 2024
- Top 10 Life Coaching Courses to Learn in November 2024
- Top 10 Career Development Courses to Learn in November 2024
- Top 10 Relationship Building Courses to Learn in November 2024
- Top 10 Parenting Skills Courses to Learn in November 2024
- Top 10 Home Improvement Courses to Learn in November 2024
- Top 10 Gardening Courses to Learn in November 2024