Introduction To Data Science
Introduction To Data Science, available at $24.99, has an average rating of 3.5, with 28 lectures, based on 254 reviews, and has 4581 subscribers.
You will learn about Start and execute the steps of a data science project, from project definition to model evaluation. Use machine learning techniques to build effective predictive models. Learn how to find and correct common problems found in real world data. This course is ideal for individuals who are The course is for analytically minded students who are looking for an introduction to applied predictive modeling methods, and who want to learn about what goes into successful data science projects. The course will teach students how to use existing machine learning methods in R, but will not teach them how to implement these algorithms from scratch. Students should be familiar with basic statistics and basic scripting/programming. Some familiarity with R is helpful; otherwise, students should be willing to learn R as they go. We will direct you to ready-to-go implementations and additional references throughout the course. It is particularly useful for The course is for analytically minded students who are looking for an introduction to applied predictive modeling methods, and who want to learn about what goes into successful data science projects. The course will teach students how to use existing machine learning methods in R, but will not teach them how to implement these algorithms from scratch. Students should be familiar with basic statistics and basic scripting/programming. Some familiarity with R is helpful; otherwise, students should be willing to learn R as they go. We will direct you to ready-to-go implementations and additional references throughout the course.
Enroll now: Introduction To Data Science
Summary
Title: Introduction To Data Science
Price: $24.99
Average Rating: 3.5
Number of Lectures: 28
Number of Published Lectures: 28
Number of Curriculum Items: 28
Number of Published Curriculum Objects: 28
Original Price: $24.99
Quality Status: approved
Status: Live
What You Will Learn
- Start and execute the steps of a data science project, from project definition to model evaluation.
- Use machine learning techniques to build effective predictive models.
- Learn how to find and correct common problems found in real world data.
Who Should Attend
- The course is for analytically minded students who are looking for an introduction to applied predictive modeling methods, and who want to learn about what goes into successful data science projects. The course will teach students how to use existing machine learning methods in R, but will not teach them how to implement these algorithms from scratch. Students should be familiar with basic statistics and basic scripting/programming. Some familiarity with R is helpful; otherwise, students should be willing to learn R as they go. We will direct you to ready-to-go implementations and additional references throughout the course.
Target Audiences
- The course is for analytically minded students who are looking for an introduction to applied predictive modeling methods, and who want to learn about what goes into successful data science projects. The course will teach students how to use existing machine learning methods in R, but will not teach them how to implement these algorithms from scratch. Students should be familiar with basic statistics and basic scripting/programming. Some familiarity with R is helpful; otherwise, students should be willing to learn R as they go. We will direct you to ready-to-go implementations and additional references throughout the course.
Use the R Programming Language to execute data science projects and become a data scientist. Implement business solutions, using machine learning and predictive analytics.
The R language provides a way to tackle day-to-day data science tasks, and this course will teach you how to apply the R programming language and useful statistical techniques to everyday business situations.
With this course, you'll be able to use the visualizations, statistical models, and data manipulation tools that modern data scientists rely upon daily to recognize trends and suggest courses of action.
Understand Data Science to Be a More Effective Data Analyst
●Use R and RStudio
●Master Modeling and Machine Learning
●Load, Visualize, and Interpret Data
Use R to Analyze Data and Come Up with Valuable Business Solutions
This course is designed for those who are analytically minded and are familiar with basic statistics and programming or scripting. Some familiarity with R is strongly recommended; otherwise, you can learn R as you go.
You'll learn applied predictive modeling methods, as well as how to explore and visualize data, how to use and understand common machine learning algorithms in R, and how to relate machine learning methods to business problems.
All of these skills will combine to give you the ability to explore data, ask the right questions, execute predictive models, and communicate your informed recommendations and solutions to company leaders.
Contents and Overview
This course begins with a walk-through of a template data science project before diving into the R statistical programming language.
You will be guided through modeling and machine learning. You'll use machine learning methods to create algorithms for a business, and you'll validate and evaluate models.
You'll learn how to load data into R and learn how to interpret and visualize the data while dealing with variables and missing values. You’ll be taught how to come to sound conclusions about your data, despite some real-world challenges.
By the end of this course, you'll be a better data analyst because you'll have an understanding of applied predictive modeling methods, and you'll know how to use existing machine learning methods in R. This will allow you to work with team members in a data science project, find problems, and come up solutions.
You’ll complete this course with the confidence to correctly analyze data from a variety of sources, while sharing conclusions that will make a business more competitive and successful.
The course will teach students how to use existing machine learning methods in R, but will not teach them how to implement these algorithms from scratch. Students should be familiar with basic statistics and basic scripting/programming.
Course Curriculum
Chapter 1: Course Overview
Lecture 1: Course Introduction
Lecture 2: Walk-through of a data science project
Lecture 3: Starting with R and data
Chapter 2: Modeling and Machine Learning
Lecture 1: Mapping Business to Machine Learning Tasks
Lecture 2: Validating Models
Lecture 3: Your Feedback is Valuable
Lecture 4: Naive Bayes: background
Lecture 5: Naive Bayes: practice
Lecture 6: Linear Regression: background
Lecture 7: Linear Regression: practice
Lecture 8: Logistic Regression: background
Lecture 9: Logistic Regression: practice
Lecture 10: Decision Trees and Random Forest: background
Lecture 11: Random Forest: practice
Lecture 12: Generalized Additive Models
Lecture 13: Support Vector Machines
Lecture 14: Gradient Boosting
Lecture 15: Regularization for Linear and Logistic Regression
Lecture 16: Evaluating Models
Chapter 3: Data
Lecture 1: Loading Data in R
Lecture 2: Visualizing Data
Lecture 3: Missing Values
Lecture 4: The Shape of Data
Lecture 5: Dealing with Categorical Variables
Lecture 6: Useful Data Transformations
Chapter 4: Moving On
Lecture 1: Recommended Books
Lecture 2: Further Topics
Lecture 3: Next Steps
Instructors
-
Nina Zumel
Data Scientist, Win-Vector LLC -
John Mount
Data Scientist, Win-Vector LLC
Rating Distribution
- 1 stars: 8 votes
- 2 stars: 8 votes
- 3 stars: 65 votes
- 4 stars: 91 votes
- 5 stars: 82 votes
Frequently Asked Questions
How long do I have access to the course materials?
You can view and review the lecture materials indefinitely, like an on-demand channel.
Can I take my courses with me wherever I go?
Definitely! If you have an internet connection, courses on Udemy are available on any device at any time. If you don’t have an internet connection, some instructors also let their students download course lectures. That’s up to the instructor though, so make sure you get on their good side!
You may also like
- Top 10 Video Editing Courses to Learn in November 2024
- Top 10 Music Production Courses to Learn in November 2024
- Top 10 Animation Courses to Learn in November 2024
- Top 10 Digital Illustration Courses to Learn in November 2024
- Top 10 Renewable Energy Courses to Learn in November 2024
- Top 10 Sustainable Living Courses to Learn in November 2024
- Top 10 Ethical AI Courses to Learn in November 2024
- Top 10 Cybersecurity Fundamentals Courses to Learn in November 2024
- Top 10 Smart Home Technology Courses to Learn in November 2024
- Top 10 Holistic Health Courses to Learn in November 2024
- Top 10 Nutrition And Diet Planning Courses to Learn in November 2024
- Top 10 Yoga Instruction Courses to Learn in November 2024
- Top 10 Stress Management Courses to Learn in November 2024
- Top 10 Mindfulness Meditation Courses to Learn in November 2024
- Top 10 Life Coaching Courses to Learn in November 2024
- Top 10 Career Development Courses to Learn in November 2024
- Top 10 Relationship Building Courses to Learn in November 2024
- Top 10 Parenting Skills Courses to Learn in November 2024
- Top 10 Home Improvement Courses to Learn in November 2024
- Top 10 Gardening Courses to Learn in November 2024