Graph Generation for Drug Discovery using Python and Keras
Graph Generation for Drug Discovery using Python and Keras, available at $44.99, has an average rating of 4.15, with 37 lectures, based on 19 reviews, and has 207 subscribers.
You will learn about Understand the basics of graph generation and its applications in various fields. Learn how to manipulate molecular structures using the RDKit library in Python. Gain proficiency in preprocessing chemical data stored in CSV files. Develop an understanding of mapping atom symbols and bond types to numerical representations. Learn to convert SMILES strings into graph representations. Understand the concepts of Generative Adversarial Networks (GANs) and their application in graph generation. Implement a Graph Generator using TensorFlow and Keras to generate molecular graphs. Create a Discriminator model to evaluate the quality of generated graphs. Learn about the Wasserstein GAN framework for improved GAN training stability. Gain hands-on experience in training and fine-tuning GAN models for graph generation tasks. Understand the importance of GPU acceleration and how to configure it for faster computations. Develop the ability to save and load model weights for future use. Gain proficiency in generating molecular graphs using the trained GAN model. Learn to visualize and analyze the generated molecular structures. This course is ideal for individuals who are Beginners in Machine Learning: If you're new to the field of machine learning and want to learn how to generate molecular graphs using advanced techniques, this course will provide a gentle and comprehensive introduction. or Aspiring Data Scientists: If you're aspiring to become a data scientist or work in the domain of chemistry-related data analysis, this course will equip you with valuable skills in graph generation and neural networks. or Chemistry Enthusiasts: If you have a background or interest in chemistry and want to explore how machine learning can be applied to molecular structures and graph generation, this course will bridge the gap between chemistry and AI. or Python Programmers: If you are already familiar with Python programming and want to expand your knowledge into the realm of graph-based machine learning, this course will offer a structured pathway. or Students and Researchers: Whether you're a student working on a project or a researcher looking to integrate graph generation into your work, this course will provide practical skills and knowledge to enhance your capabilities. or Lifelong Learners: If you're simply curious about the intersection of machine learning, chemistry, and graph generation, this course welcomes learners of all backgrounds and experiences. It is particularly useful for Beginners in Machine Learning: If you're new to the field of machine learning and want to learn how to generate molecular graphs using advanced techniques, this course will provide a gentle and comprehensive introduction. or Aspiring Data Scientists: If you're aspiring to become a data scientist or work in the domain of chemistry-related data analysis, this course will equip you with valuable skills in graph generation and neural networks. or Chemistry Enthusiasts: If you have a background or interest in chemistry and want to explore how machine learning can be applied to molecular structures and graph generation, this course will bridge the gap between chemistry and AI. or Python Programmers: If you are already familiar with Python programming and want to expand your knowledge into the realm of graph-based machine learning, this course will offer a structured pathway. or Students and Researchers: Whether you're a student working on a project or a researcher looking to integrate graph generation into your work, this course will provide practical skills and knowledge to enhance your capabilities. or Lifelong Learners: If you're simply curious about the intersection of machine learning, chemistry, and graph generation, this course welcomes learners of all backgrounds and experiences.
Enroll now: Graph Generation for Drug Discovery using Python and Keras
Summary
Title: Graph Generation for Drug Discovery using Python and Keras
Price: $44.99
Average Rating: 4.15
Number of Lectures: 37
Number of Published Lectures: 37
Number of Curriculum Items: 37
Number of Published Curriculum Objects: 37
Original Price: ₹799
Quality Status: approved
Status: Live
What You Will Learn
- Understand the basics of graph generation and its applications in various fields.
- Learn how to manipulate molecular structures using the RDKit library in Python.
- Gain proficiency in preprocessing chemical data stored in CSV files.
- Develop an understanding of mapping atom symbols and bond types to numerical representations.
- Learn to convert SMILES strings into graph representations.
- Understand the concepts of Generative Adversarial Networks (GANs) and their application in graph generation.
- Implement a Graph Generator using TensorFlow and Keras to generate molecular graphs.
- Create a Discriminator model to evaluate the quality of generated graphs.
- Learn about the Wasserstein GAN framework for improved GAN training stability.
- Gain hands-on experience in training and fine-tuning GAN models for graph generation tasks.
- Understand the importance of GPU acceleration and how to configure it for faster computations.
- Develop the ability to save and load model weights for future use.
- Gain proficiency in generating molecular graphs using the trained GAN model.
- Learn to visualize and analyze the generated molecular structures.
Who Should Attend
- Beginners in Machine Learning: If you're new to the field of machine learning and want to learn how to generate molecular graphs using advanced techniques, this course will provide a gentle and comprehensive introduction.
- Aspiring Data Scientists: If you're aspiring to become a data scientist or work in the domain of chemistry-related data analysis, this course will equip you with valuable skills in graph generation and neural networks.
- Chemistry Enthusiasts: If you have a background or interest in chemistry and want to explore how machine learning can be applied to molecular structures and graph generation, this course will bridge the gap between chemistry and AI.
- Python Programmers: If you are already familiar with Python programming and want to expand your knowledge into the realm of graph-based machine learning, this course will offer a structured pathway.
- Students and Researchers: Whether you're a student working on a project or a researcher looking to integrate graph generation into your work, this course will provide practical skills and knowledge to enhance your capabilities.
- Lifelong Learners: If you're simply curious about the intersection of machine learning, chemistry, and graph generation, this course welcomes learners of all backgrounds and experiences.
Target Audiences
- Beginners in Machine Learning: If you're new to the field of machine learning and want to learn how to generate molecular graphs using advanced techniques, this course will provide a gentle and comprehensive introduction.
- Aspiring Data Scientists: If you're aspiring to become a data scientist or work in the domain of chemistry-related data analysis, this course will equip you with valuable skills in graph generation and neural networks.
- Chemistry Enthusiasts: If you have a background or interest in chemistry and want to explore how machine learning can be applied to molecular structures and graph generation, this course will bridge the gap between chemistry and AI.
- Python Programmers: If you are already familiar with Python programming and want to expand your knowledge into the realm of graph-based machine learning, this course will offer a structured pathway.
- Students and Researchers: Whether you're a student working on a project or a researcher looking to integrate graph generation into your work, this course will provide practical skills and knowledge to enhance your capabilities.
- Lifelong Learners: If you're simply curious about the intersection of machine learning, chemistry, and graph generation, this course welcomes learners of all backgrounds and experiences.
Are you curious about the world of molecular structures, drug discovery, and generative models? Look no further! This exciting course will take you on a journey through the fascinating field of graph generation and its real-world applications.
In this course, we will start by exploring the basics of molecular representations using SMILES notation and how to convert them into graph structures using the powerful RDKit library. You will learn how to handle and manipulate molecular data efficiently.
Next, we will dive into the realm of generative models, specifically GraphWGAN (Graph Wasserstein Generative Adversarial Network). You will gain an understanding of how GraphWGAN combines the power of generative adversarial networks (GANs) and graph neural networks (GNNs)to create realistic and diverse molecular graphs.
Throughout the course, we will build and trainboth the generator and discriminator models, learning how they work together to create new molecules that closely resemble real chemical compounds. As we progress, you will discover the art of hyperparameter tuning and optimizing the training process to achieve better results.
But the journey doesn’t end there! We will explore various real-world applications of graph generation, particularly in drug discovery and materials science. You will witness how this cutting-edge technology is revolutionizing the pharmaceutical industry, accelerating the process of drug development, and contributing to groundbreaking research.
As we delve into the practical aspects of this course, you will gain hands-on experience working with TensorFlow, Keras, and other essential libraries, honing your skills in machine learning and data manipulation.
By the end of this course, you will be equipped with the knowledge and skills to tackle graph generation tasks independently. You will also have a portfolio of impressive projects that showcase your expertise in this exciting field.
The job prospects in the world of graph generation and artificial intelligence are booming! Industries such as pharmaceuticals, biotechnology, and materials science are actively seeking professionals who can leverage the power of graph generation models for innovative research and product development. So, this course can open doors to exciting job opportunities and career growth.
So, if you are ready to embark on a journey that merges chemistry, artificial intelligence, and real-world impact, join us for this thrilling course on Graph Generation using GraphWGAN. Let’s uncover the secrets of molecular structures and unleash the power of generative models together!
Enroll now and let the adventure begin!
Course Curriculum
Chapter 1: Introduction
Lecture 1: Introduction
Lecture 2: About this Project
Lecture 3: Why Should we Learn?
Lecture 4: Applications
Lecture 5: Python, Keras, and Google Colab
Chapter 2: Model Generation, Training and Prediction
Lecture 1: Setup Working Directory
Lecture 2: What is qm9.csv file?
Lecture 3: What is code.ipynb?
Lecture 4: Launch Code
Lecture 5: Activate GPU
Lecture 6: Mount Google Drive
Lecture 7: Installing two Python libraries
Lecture 8: Importing several libraries
Lecture 9: Disabling the logging functionality
Lecture 10: Loading Dataset
Lecture 11: Process CSV file
Lecture 12: Selects a specific SMILES string
Lecture 13: Convert the SMILES string
Lecture 14: Mapping atom symbols
Lecture 15: Mapping bond types
Lecture 16: Constants
Lecture 17: Convert a SMILES string to a graph representation
Lecture 18: Convert graph representation back into RDKit molecule object
Lecture 19: Graph representation
Lecture 20: Converting subset of SMILES data to graph tensors
Lecture 21: Defines a generator model
Lecture 22: Creates an instance of the GraphGenerator model
Lecture 23: Defines a custom graph convolutional layer
Lecture 24: Creates the discriminator model
Lecture 25: Creates a discriminator model
Lecture 26: Wasserstein Generative Adversarial Network
Lecture 27: Sets up a WGAN
Lecture 28: Training
Lecture 29: Saving and loading the model weights
Lecture 30: Sample molecules
Lecture 31: Generating molecules
Lecture 32: Displaying molecules
Instructors
-
Karthik Karunakaran, Ph.D.
Transforming Real-World Problems with the Power of AI-ML
Rating Distribution
- 1 stars: 1 votes
- 2 stars: 0 votes
- 3 stars: 6 votes
- 4 stars: 4 votes
- 5 stars: 8 votes
Frequently Asked Questions
How long do I have access to the course materials?
You can view and review the lecture materials indefinitely, like an on-demand channel.
Can I take my courses with me wherever I go?
Definitely! If you have an internet connection, courses on Udemy are available on any device at any time. If you don’t have an internet connection, some instructors also let their students download course lectures. That’s up to the instructor though, so make sure you get on their good side!
You may also like
- Top 10 Language Learning Courses to Learn in November 2024
- Top 10 Video Editing Courses to Learn in November 2024
- Top 10 Music Production Courses to Learn in November 2024
- Top 10 Animation Courses to Learn in November 2024
- Top 10 Digital Illustration Courses to Learn in November 2024
- Top 10 Renewable Energy Courses to Learn in November 2024
- Top 10 Sustainable Living Courses to Learn in November 2024
- Top 10 Ethical AI Courses to Learn in November 2024
- Top 10 Cybersecurity Fundamentals Courses to Learn in November 2024
- Top 10 Smart Home Technology Courses to Learn in November 2024
- Top 10 Holistic Health Courses to Learn in November 2024
- Top 10 Nutrition And Diet Planning Courses to Learn in November 2024
- Top 10 Yoga Instruction Courses to Learn in November 2024
- Top 10 Stress Management Courses to Learn in November 2024
- Top 10 Mindfulness Meditation Courses to Learn in November 2024
- Top 10 Life Coaching Courses to Learn in November 2024
- Top 10 Career Development Courses to Learn in November 2024
- Top 10 Relationship Building Courses to Learn in November 2024
- Top 10 Parenting Skills Courses to Learn in November 2024
- Top 10 Home Improvement Courses to Learn in November 2024