LEARNING PATH: Python: Advanced Machine Learning with Python
LEARNING PATH: Python: Advanced Machine Learning with Python, available at $34.99, has an average rating of 3.65, with 71 lectures, 2 quizzes, based on 20 reviews, and has 167 subscribers.
You will learn about Take the advantage of the power of Python to handle data extraction and manipulation Delve into the world of analytics to predict accurate situations Implement machine learning classification and regression algorithms from scratch with Python Evaluate the performance of a machine learning model and optimize it Explore and use Python's impressive machine learning ecosystem Successfully evaluate and apply the most effective models to problems Learn the fundamentals of NLP—and put them into practice Visualize data for maximum impact and clarity Deploy machine learning models using third-party APIs Get to grips with feature engineering This course is ideal for individuals who are This Learning Path is a captivating journey that starts from the very basics and gradually picks up pace as the story unfolds. Each concept is first succinctly defined in the larger context of things, followed by a detailed explanation of their application. or Every concept is explained with the help of a project that solves a real-world problem and involves hands-on work, giving you a deep insight into the world of machine learning. It is also a combination of six independent projects, each taking a unique dataset, a different problem statement, and a different solution. It is particularly useful for This Learning Path is a captivating journey that starts from the very basics and gradually picks up pace as the story unfolds. Each concept is first succinctly defined in the larger context of things, followed by a detailed explanation of their application. or Every concept is explained with the help of a project that solves a real-world problem and involves hands-on work, giving you a deep insight into the world of machine learning. It is also a combination of six independent projects, each taking a unique dataset, a different problem statement, and a different solution.
Enroll now: LEARNING PATH: Python: Advanced Machine Learning with Python
Summary
Title: LEARNING PATH: Python: Advanced Machine Learning with Python
Price: $34.99
Average Rating: 3.65
Number of Lectures: 71
Number of Quizzes: 2
Number of Published Lectures: 71
Number of Curriculum Items: 73
Number of Published Curriculum Objects: 71
Original Price: $199.99
Quality Status: approved
Status: Live
What You Will Learn
- Take the advantage of the power of Python to handle data extraction and manipulation
- Delve into the world of analytics to predict accurate situations
- Implement machine learning classification and regression algorithms from scratch with Python
- Evaluate the performance of a machine learning model and optimize it
- Explore and use Python's impressive machine learning ecosystem
- Successfully evaluate and apply the most effective models to problems
- Learn the fundamentals of NLP—and put them into practice
- Visualize data for maximum impact and clarity
- Deploy machine learning models using third-party APIs
- Get to grips with feature engineering
Who Should Attend
- This Learning Path is a captivating journey that starts from the very basics and gradually picks up pace as the story unfolds. Each concept is first succinctly defined in the larger context of things, followed by a detailed explanation of their application.
- Every concept is explained with the help of a project that solves a real-world problem and involves hands-on work, giving you a deep insight into the world of machine learning. It is also a combination of six independent projects, each taking a unique dataset, a different problem statement, and a different solution.
Target Audiences
- This Learning Path is a captivating journey that starts from the very basics and gradually picks up pace as the story unfolds. Each concept is first succinctly defined in the larger context of things, followed by a detailed explanation of their application.
- Every concept is explained with the help of a project that solves a real-world problem and involves hands-on work, giving you a deep insight into the world of machine learning. It is also a combination of six independent projects, each taking a unique dataset, a different problem statement, and a different solution.
Are you interested to enter into the world of data science and learn the most effective machine learning tools and techniques with Python? then you should surely go for this Learning Path.
Packt’s Video Learning Paths are a series of individual video products put together in a logical and stepwise manner such that each video builds on the skills learned in the video before it.
Machine learning and data science are some of the top buzzwords in the technical world today. Machine learning – the application and science of algorithms that makes sense of data, is the most exciting field of all the computer sciences! The resurgent interest in machine learning is due to the same factors that have made data science more popular than ever. We are living in an age where data comes in abundance; using the self-learning algorithms from the field of machine learning, you can turn this data into knowledge. Machine learning gives you unimaginably powerful insights into data. Python has topped the charts in the recent years over other programming languages. The usage of Python is such that it cannot be limited to only one activity. Its growing popularity has allowed it to enter into some of the most popular and complex processes such as artificial intelligence, machine learning, natural language processing, data science, and so on.
The highlights of this Learning Path are:
- Solve interesting, real-world problems using machine learning and Python as the learning journey unfolds
- Use Python to visualize data spread across multiple dimensions and extract useful features
Let’s take a quick look at your learning journey. This Learning Path is your entry point to machine learning. It starts with an introduction to machine learning and Python language. You’ll learn the important concepts such as exploratory data analysis, data preprocessing, feature extraction, data visualization and clustering, classification, regression, and model performance evaluation. With the help of the various projects included, you’ll acquire the mechanics of several important machine learning algorithms. You’ll also be guided step-by-step to build your own models from scratch. You’ll learn to tackle data-driven problems and implement your solutions with the powerful yet simple Python language. Interesting and easy-to-follow examples—including news topic classification, spam email detection, online ad click-through prediction, and stock prices forecasts—will keep you glued to the screen. Moving further, six different independent projects will help you master machine learning in Python. Finally, you’ll have a broad picture of the machine learning ecosystem and mastered best practices for applying machine learning techniques.
By the end of this Learning Path, you’ll have learned to apply various machine learning algorithms with Python packages and libraries to implement your own machine learning models.
Meet Your Experts:
We have combined the best works of the following esteemed authors to ensure that your learning journey is smooth:
Yuxi (Hayden) Liuis currently an applied research scientist working in the largest privately-owned Canadian artificial intelligence R&D company. He is focused on developing machine learning systems and models and implementing appropriate architectures for given learning tasks, including deep neural networks, convolutional neural networks, recurrent networks, SVM, and random forest. He has worked for a few years as a data scientist at several computational advertising companies, where he applied his machine learning expertise in ad optimization. Yuxi earned his degree from the University of Toronto, and published five first-authored IEEE transactions and conference papers during his master’s research. He has authored a Packt book titled Python Machine Learning By Example, which was ranked the #1 best seller in Amazon India in 2017. He is also a machine learning education enthusiast and provides weekly training in machine learning.
Alexander T. Combsis an experienced data scientist, strategist, and developer with a background in financial data extraction, natural language processing and generation, and quantitative and statistical modeling. He is currently a full-time lead instructor for a data science immersive program in New York City.
Course Curriculum
Chapter 1: Step-by-Step Machine Learning with Python
Lecture 1: The Course Overview
Lecture 2: Introduction to Machine Learning
Lecture 3: Installing Software and Setting Up
Lecture 4: Understanding NLP
Lecture 5: Touring Powerful NLP Libraries in Python
Lecture 6: Getting the Newsgroups Data
Lecture 7: Thinking about Features
Lecture 8: Visualization
Lecture 9: Data Preprocessing
Lecture 10: Clustering
Lecture 11: Topic Modeling
Lecture 12: Getting Started with Classification
Lecture 13: Exploring Naïve Bayes
Lecture 14: The Mechanics of Naïve Bayes
Lecture 15: The Naïve Bayes Implementation
Lecture 16: Classifier Performance Evaluation
Lecture 17: Model Tuning and cross-validation
Lecture 18: Recap and Inverse Document Frequency
Lecture 19: The Mechanics of SVM
Lecture 20: The Implementations of SVM
Lecture 21: The Kernels of SVM
Lecture 22: Choosing Between the Linear and the RBF Kernel
Lecture 23: News topic Classification with Support Vector Machine
Lecture 24: Fetal State Classification with SVM
Lecture 25: Brief Overview of Advertising Click-Through Prediction
Lecture 26: Decision Tree Classifier
Lecture 27: The Implementations of Decision Tree
Lecture 28: Click-Through Prediction with Decision Tree
Lecture 29: Random Forest – Feature Bagging of Decision Tree
Lecture 30: One-Hot Encoding – Converting Categorical Features to Numerical
Lecture 31: Logistic Regression Classifier
Lecture 32: Click-Through Prediction with Logistic Regression by Gradient Descent
Lecture 33: Feature Selection via Random Forest
Lecture 34: Brief Overview of the Stock Market And Stock Price
Lecture 35: Predicting Stock Price with Regression Algorithms
Lecture 36: Data Acquisition and Feature Generation
Lecture 37: Linear Regression
Lecture 38: Decision Tree Regression
Lecture 39: Support Vector Regression
Lecture 40: Regression Performance Evaluation
Lecture 41: Stock Price Prediction with Regression Algorithms
Lecture 42: Best Practices in Data Preparation Stage
Lecture 43: Best Practices in the Training Sets Generation Stage
Lecture 44: Best Practices in the Model Training, Evaluation, and Selection Stage
Lecture 45: Best Practices in the Deployment and Monitoring Stage
Chapter 2: Python Machine Learning Projects
Lecture 1: The Course Overview
Lecture 2: Sourcing Airfare Pricing Data
Lecture 3: Retrieving the Fare Data with Advanced Web Scraping Techniques
Lecture 4: Parsing the DOM to Extract Pricing Data
Lecture 5: Sending Real-Time Alerts Using IFTTT
Lecture 6: Putting It All Together
Lecture 7: The IPO Market
Lecture 8: Feature Engineering
Lecture 9: Binary Classification
Lecture 10: Feature Importance
Lecture 11: Creating a Supervised Training Set with the Pocket App
Lecture 12: Using the embed.ly API to Download Story Bodies
Lecture 13: Natural Language Processing Basics
Lecture 14: Support Vector Machines
Lecture 15: IFTTT Integration with Feeds, Google Sheets, and E-mail
Lecture 16: Setting Up Your Daily Personal Newsletter
Lecture 17: What Does Research Tell Us about the Stock Market?
Lecture 18: Developing a Trading Strategy
Lecture 19: Building a Model and Evaluating Its Performance
Lecture 20: Modeling with Dynamic Time Warping
Lecture 21: Machine Learning on Images
Lecture 22: Working with Images
Lecture 23: Finding Similar Images
Lecture 24: Building an Image Similarity Engine
Lecture 25: The Design of Chatbots
Lecture 26: Building a Chatbot
Instructors
-
Packt Publishing
Tech Knowledge in Motion
Rating Distribution
- 1 stars: 1 votes
- 2 stars: 0 votes
- 3 stars: 7 votes
- 4 stars: 8 votes
- 5 stars: 4 votes
Frequently Asked Questions
How long do I have access to the course materials?
You can view and review the lecture materials indefinitely, like an on-demand channel.
Can I take my courses with me wherever I go?
Definitely! If you have an internet connection, courses on Udemy are available on any device at any time. If you don’t have an internet connection, some instructors also let their students download course lectures. That’s up to the instructor though, so make sure you get on their good side!
You may also like
- Top 10 Video Editing Courses to Learn in November 2024
- Top 10 Music Production Courses to Learn in November 2024
- Top 10 Animation Courses to Learn in November 2024
- Top 10 Digital Illustration Courses to Learn in November 2024
- Top 10 Renewable Energy Courses to Learn in November 2024
- Top 10 Sustainable Living Courses to Learn in November 2024
- Top 10 Ethical AI Courses to Learn in November 2024
- Top 10 Cybersecurity Fundamentals Courses to Learn in November 2024
- Top 10 Smart Home Technology Courses to Learn in November 2024
- Top 10 Holistic Health Courses to Learn in November 2024
- Top 10 Nutrition And Diet Planning Courses to Learn in November 2024
- Top 10 Yoga Instruction Courses to Learn in November 2024
- Top 10 Stress Management Courses to Learn in November 2024
- Top 10 Mindfulness Meditation Courses to Learn in November 2024
- Top 10 Life Coaching Courses to Learn in November 2024
- Top 10 Career Development Courses to Learn in November 2024
- Top 10 Relationship Building Courses to Learn in November 2024
- Top 10 Parenting Skills Courses to Learn in November 2024
- Top 10 Home Improvement Courses to Learn in November 2024
- Top 10 Gardening Courses to Learn in November 2024