Python Data Science with the TCLab
Python Data Science with the TCLab, available at $54.99, has an average rating of 4.25, with 14 lectures, 3 quizzes, based on 12 reviews, and has 1074 subscribers.
You will learn about Visualize data to understand relationships and assess data quality Understand the differences between classification, regression, and clustering and when each can be applied Detect overfitting and implement strategies to improve prediction Understand engineering and business objectives to plan applications Implement data science techniques successfully to complete a project This course is ideal for individuals who are Beginner Python developers interested in Data Science or Aspiring and experienced scientists and engineers or Students and professionals who want to adopt Data Science in practice It is particularly useful for Beginner Python developers interested in Data Science or Aspiring and experienced scientists and engineers or Students and professionals who want to adopt Data Science in practice.
Enroll now: Python Data Science with the TCLab
Summary
Title: Python Data Science with the TCLab
Price: $54.99
Average Rating: 4.25
Number of Lectures: 14
Number of Quizzes: 3
Number of Published Lectures: 14
Number of Published Quizzes: 3
Number of Curriculum Items: 18
Number of Published Curriculum Objects: 18
Original Price: $19.99
Quality Status: approved
Status: Live
What You Will Learn
- Visualize data to understand relationships and assess data quality
- Understand the differences between classification, regression, and clustering and when each can be applied
- Detect overfitting and implement strategies to improve prediction
- Understand engineering and business objectives to plan applications
- Implement data science techniques successfully to complete a project
Who Should Attend
- Beginner Python developers interested in Data Science
- Aspiring and experienced scientists and engineers
- Students and professionals who want to adopt Data Science in practice
Target Audiences
- Beginner Python developers interested in Data Science
- Aspiring and experienced scientists and engineers
- Students and professionals who want to adopt Data Science in practice
These modules are intended to help you develop data science and machine learning skills in Python. The 12 modules have video tutorials for each exercise with solutions for each exercise. One of the unique things about these modules is that you work on basic elements and then test your knowledge with real data exercises with a heat transfer design project. You will see your Python code have a real impact by designing the materials for a new product.
One of the best ways to start or review a programming language is to work on a project. These exercises are designed to teach data science Python programming skills. Data science applications are found across almost all industries where raw data is transformed into actionable information that drives scientific discovery, business innovations, and development. This project is to determine the thermal conductivity of several materials. Thermal conductivity is how well a material conducts or insulates against heat transfer. The specific heat transfer project shows how to apply data science to solve an important problems with methods that are applicable to many different applications.
Objective: Collect and analyze data from the TCLab to determine the thermal conductivity of three materials (metal, plastic, and cardboard) that are placed between two temperature sensors. Create a digital twin that predicts heat transfer and temperature.
To make the problem more applicable to a real situation, suppose that you are designing a next-generation cell phone. The battery and processor on the cell phone generate a lot of heat. You want to make sure that the material between them will prevent over-heating of the battery by the processor. This study will help you answer questions about material properties for predicting the temperature of the battery and processor.
Topics
There are 12 lessons to help you with the objective of learning data science in Python. The first thing that you will need is to install Python to open and run the IPython notebook files in Jupyter. There are additional instructions on how to install Python and manage modules. Any Python distribution or Integrated Development Environment (IDE) can be used (IDLE, Spyder, PyCharm, and others) but Jupyter notebook or VSCode is required to open and run the IPython notebook (.ipynb) files. All of the IPython notebook (.ipynb) files can be downloaded. Don’t forget to unzip the folder (extract the archive) and copy it to a convenient location before starting.
-
Overview
-
Data Import and Export
-
Data Analysis
-
Visualize Data
-
Prepare (Cleanse, Scale, Divide) Data
-
Regression
-
Features
-
Classification
-
Interpolation
-
Solve Equations
-
Differential Equations
-
Time Series
They give the skills needed to work on the final project. In the final project, metal coins, plastic, and cardboard are inserted in between the two heaters so that there is a conduction path for heat between the two sensors. The temperature difference and temperature levels are affected by the ability of the material to conduct heat from heater 1 and temperature sensor T1 to the other temperature sensor T2.
You may not always know how to solve the problems initially or how to construct the algorithms. You may not know the function that you need or the name of the property associated with an object. This is by design. You are to search out the information that you might need using help resources, online resources, textbooks, etc.
You will be assessed not only on the ability of the program to give the correct output, but also on good programming practices such as ease of use, code readability and simplicity, modular programming, and adequate, useful comments. Just remember that comments, indentation, and modular programming can really help you and others when reviewing your code.
Temperature Control Lab
The projects are a review of all course material with real data from temperature sensors in the Temperature Control Lab (TCLab). The temperatures are adjusted with heaters that are adjusted with the TCLab. If you do not have a TCLab module, use the digital twin simulator by replacing TCLab() with TCLabModel().
Course Curriculum
Chapter 1: Data Science Introduction
Lecture 1: Data Science Python Course
Lecture 2: Install Python and Data Science Packages
Chapter 2: Import Data, Basic Statistics, Visualize
Lecture 1: Install and Overview (Module 1)
Lecture 2: Import and Export Data (Module 2)
Lecture 3: Summarize with Statistics (Module 3)
Lecture 4: Visualize Data (Module 4)
Chapter 3: Regression and Classification
Lecture 1: Prepare Data (Module 5)
Lecture 2: Regression (Module 6)
Lecture 3: Features (Module 7)
Lecture 4: Classification (Module 8)
Chapter 4: Interpolation and Dynamics
Lecture 1: Interpolation (Module 9)
Lecture 2: Solve Equations (Module 10)
Lecture 3: Differential Equations (Module 11)
Lecture 4: Time Series (Module 12)
Instructors
-
John Hedengren
Engineering Professor
Rating Distribution
- 1 stars: 0 votes
- 2 stars: 0 votes
- 3 stars: 3 votes
- 4 stars: 2 votes
- 5 stars: 7 votes
Frequently Asked Questions
How long do I have access to the course materials?
You can view and review the lecture materials indefinitely, like an on-demand channel.
Can I take my courses with me wherever I go?
Definitely! If you have an internet connection, courses on Udemy are available on any device at any time. If you don’t have an internet connection, some instructors also let their students download course lectures. That’s up to the instructor though, so make sure you get on their good side!
You may also like
- Top 10 Language Learning Courses to Learn in November 2024
- Top 10 Video Editing Courses to Learn in November 2024
- Top 10 Music Production Courses to Learn in November 2024
- Top 10 Animation Courses to Learn in November 2024
- Top 10 Digital Illustration Courses to Learn in November 2024
- Top 10 Renewable Energy Courses to Learn in November 2024
- Top 10 Sustainable Living Courses to Learn in November 2024
- Top 10 Ethical AI Courses to Learn in November 2024
- Top 10 Cybersecurity Fundamentals Courses to Learn in November 2024
- Top 10 Smart Home Technology Courses to Learn in November 2024
- Top 10 Holistic Health Courses to Learn in November 2024
- Top 10 Nutrition And Diet Planning Courses to Learn in November 2024
- Top 10 Yoga Instruction Courses to Learn in November 2024
- Top 10 Stress Management Courses to Learn in November 2024
- Top 10 Mindfulness Meditation Courses to Learn in November 2024
- Top 10 Life Coaching Courses to Learn in November 2024
- Top 10 Career Development Courses to Learn in November 2024
- Top 10 Relationship Building Courses to Learn in November 2024
- Top 10 Parenting Skills Courses to Learn in November 2024
- Top 10 Home Improvement Courses to Learn in November 2024